Search results for "MESH : Escherichia coli"

showing 9 items of 9 documents

Survival cost of an early immune soliciting in nature.

2009

8 pages; International audience; If immune functions confer obvious benefits to hosts, life-history theory assumes that they also induce costs, leading to trade-offs between immunity and other fitness components. However, whether substantial fitness costs are associated with immune systems in the wild is debatable, as numerous factors may influence the costs and benefits associated with immune activation. Here, we explore the survival cost of immune deployment in postfledging birds. We injected Eurasian collared dove nestlings (Streptopelia decaocto) with antigens from Escherichia coli, and examined whether this immune challenge affected survival after fledging. To assess survival, birds we…

0106 biological sciencesMESH : Escherichia coliimmune defensesMESH : Bird Diseases[ SDV.IMM.IA ] Life Sciences [q-bio]/Immunology/Adaptive immunology01 natural sciencesMESH: Bird DiseasesPredationNesting BehaviorBody SizeMESH: AnimalsMESH: Nesting BehaviorEscherichia coli InfectionsMESH : Adaptation Physiological0303 health sciencesbiologyMESH: Escherichia coli[SDV.BID.EVO]Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE]StreptopeliaFledgeMESH : Antigens BacterialMESH : Immunity InnateAdaptation Physiological[ SDV.BID.EVO ] Life Sciences [q-bio]/Biodiversity/Populations and Evolution [q-bio.PE][SDV.IMM.IA]Life Sciences [q-bio]/Immunology/Adaptive immunologyMESH : Escherichia coli InfectionsMESH: Survival AnalysisMESH: Immunity InnateGeneral Agricultural and Biological Sciencessurvival.Immune activationfitness costMESH : Body SizeMESH : Nesting Behavior010603 evolutionary biologysurvivalBirds03 medical and health sciencesImmune systemAntigenImmunityGeneticsEscherichia coliAnimalsColumbidaeEcology Evolution Behavior and SystematicsMESH: Escherichia coli Infections030304 developmental biologyMESH: ColumbidaeAntigens BacterialMESH: Body SizeBird Diseasesbiology.organism_classificationMESH: Adaptation PhysiologicalSurvival AnalysisImmunity Innatefree-ranging vertebrateImmunologybacteriaMESH : AnimalsMESH : Survival AnalysisMESH : ColumbidaeMESH: Antigens BacterialFitness cost
researchProduct

Trends of extended-spectrum β-lactamase-producing Escherichia coli sequence type 131 and its H30 subclone in a French hospital over a 15-year period.

2016

International audience; Sequence type 131 (ST131) is a predominant lineage among extraintestinal pathogenic Escherichia coli. It plays a major role in the worldwide dissemination of E. coli producing extended-spectrum β-lactamases (ESBLs). Here we describe the long-term epidemiology of this clonal group in a French university hospital, where the incidence of ESBL-producing E. coli has increased from 0.018 case per 1000 patient-days in the year 2000 to 0.50 case per 1000 patient-days in 2014. The first of the 141 ST131 isolates was recovered in 2006, and the ST131 clonal group accounted for 18.1% of total ESBL-producing E. coli over the whole period (2000-2014). Subclonal typing showed that …

0301 basic medicineMESH : Escherichia coliMESH : Retrospective StudiesMESH : Multilocus Sequence TypingMESH: beta-LactamasesMESH : GenotypeMultidrug resistancemedicine.disease_causeHospitals UniversityMESH: Genotype[ SDV.MP ] Life Sciences [q-bio]/Microbiology and ParasitologyPharmacology (medical)MESH: IncidenceMESH: Genetic VariationEscherichia coli InfectionsComputingMilieux_MISCELLANEOUSCross InfectionMolecular EpidemiologyExtraintestinal Pathogenic Escherichia coliMESH: Escherichia coliIncidenceIncidence (epidemiology)MESH : beta-LactamasesGeneral MedicinePFGEMESH : IncidenceElectrophoresis Gel Pulsed-Field3. Good healthInfectious DiseasesMESH: Electrophoresis Gel Pulsed-FieldMESH: Multilocus Sequence Typing[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyMESH : Escherichia coli Infections[SDE]Environmental SciencesFranceMESH : Cross InfectionMicrobiology (medical)clone (Java method)Lineage (genetic)GenotypeMESH : Molecular Epidemiology030106 microbiologyBiologybeta-LactamasesMicrobiology03 medical and health sciencesExtended-spectrum β-lactamaseMESH : Genetic VariationEscherichia coliPulsed-field gel electrophoresismedicineHumansMESH: Molecular EpidemiologyTypingMESH : FranceEscherichia coliMESH : Hospitals UniversityRetrospective StudiesMESH : Electrophoresis Gel Pulsed-FieldMESH: Escherichia coli InfectionsMESH: Hospitals UniversityMESH: HumansMESH : HumansGenetic VariationMESH: Cross InfectionMESH: Retrospective Studiesbacterial infections and mycosesMultiple drug resistanceMESH: FranceESBLMultilocus Sequence Typing
researchProduct

Evaluation of acyl coenzyme A oxidase (Aox) isozyme function in the n- alkane-assimilating yeast Yarrowia lipolytica

1999

ABSTRACT We have identified five acyl coenzyme A (CoA) oxidase isozymes (Aox1 through Aox5) in the n -alkane-assimilating yeast Yarrowia lipolytica , encoded by the POX1 through POX5 genes. The physiological function of these oxidases has been investigated by gene disruption. Single, double, triple, and quadruple disruptants were constructed. Global Aox activity was determined as a function of time after induction and of substrate chain length. Single null mutations did not affect growth but affected the chain length preference of acyl-CoA oxidase activity, as evidenced by a chain length specificity for Aox2 and Aox3. Aox2 was shown to be a long-chain acyl-CoA oxidase and Aox3 was found to …

MESH : Escherichia coliMESH: Sequence Analysis DNAMESH : Molecular Sequence DataMutantGene ExpressionMESH: Base Sequencechemistry.chemical_compoundCloning Molecular[INFO.INFO-BT]Computer Science [cs]/BiotechnologyDNA FungalMESH: MutagenesisMESH : IsoenzymesOxidase testbiologyMESH: Escherichia coliMESH: Acyl-CoA OxidaseMESH : MutagenesisMESH : Cell DivisionMESH : OxidoreductasesIsoenzymesBlotEukaryotic Cells[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyFungalBiochemistryMESH: IsoenzymesMESH: Cell DivisionMESH : Acyl-CoA OxidaseOxidoreductasesSequence Analysis[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyCell DivisionMESH: Gene ExpressionMESH : Cloning MolecularGenes FungalMolecular Sequence DataMicrobiologyIsozymeWESTERN BLOTTINGAlkanes[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyEscherichia coliMESH: Cloning Molecular[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyMESH: OxidoreductasesMESH: Saccharomycetales[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMolecular BiologyGeneMESH : AlkanesMESH: Molecular Sequence DataBase SequenceMolecularYarrowiaSequence Analysis DNAMESH : SaccharomycetalesDNAbiology.organism_classificationMolecular biologyYeastMESH : Gene ExpressionMESH: AlkanesMESH: DNA FungalOleic acid[INFO.INFO-BT] Computer Science [cs]/BiotechnologyGeneschemistryMutagenesisSaccharomycetalesMESH : Base SequenceMESH : Genes FungalAcyl-CoA OxidaseMESH : DNA FungalMESH: Genes FungalMESH : Sequence Analysis DNACloning
researchProduct

Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli.

2000

ABSTRACT Wild-type Escherichia coli K-12 ferments glucose to a mixture of ethanol and acetic, lactic, formic, and succinic acids. In anoxic chemostat culture at four dilution rates and two different oxidoreduction potentials (ORP), this strain generated a spectrum of products which depended on ORP. Whatever the dilution rate tested, in low reducing conditions (−100 mV), the production of formate, acetate, ethanol, and lactate was in molar proportions of approximately 2.5:1:1:0.3, and in high reducing conditions (−320 mV), the production was in molar proportions of 2:0.6:1:2. The modification of metabolic fluxes was due to an ORP effect on the synthesis or stability of some fermentation enzy…

MESH : Models Chemical0106 biological sciencesMESH: Oxidation-ReductionMESH : Acetic AcidMESH : Escherichia coliMESH : NADFormatesOxaloacetatesMESH: Phosphoenolpyruvate CarboxylaseSuccinic AcidMESH: Alcohol DehydrogenaseMESH : CarbonMESH : EthanolMESH: Carbon Dioxide01 natural sciencesPhosphoenolpyruvatechemistry.chemical_compoundModels[INFO.INFO-BT]Computer Science [cs]/BiotechnologyAcetic Acid0303 health sciencesbiologyMESH: Escherichia coliMESH: Models ChemicalMESH : Acetyl Coenzyme AMESH: NADLactic acidMESH : Carbon DioxideBiochemistryFormic AcidsMESH: PhosphoenolpyruvateMESH: Acetic AcidMESH: Pyruvate KinaseMESH : Phosphoenolpyruvate CarboxylaseMESH: Oxaloacetic AcidsOxidation-Reduction[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyMESH: EthanolPhysiology and MetabolismPyruvate KinaseElectronsChemicalMESH: CarbonMESH : Formic AcidsChemostatMicrobiologyMESH: Fermentation03 medical and health sciencesAcetic acidMESH : Alcohol DehydrogenaseAcetyl Coenzyme AMESH : Fermentation010608 biotechnology[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyEscherichia coliFormate[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyLactic Acid[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyMolecular Biology030304 developmental biologyAlcohol dehydrogenaseMESH : Oxidation-ReductionMESH: ElectronsEthanolEthanolMESH : Succinic AcidAlcohol DehydrogenaseCarbon DioxideNADMESH: Formic AcidsMESH : Pyruvate KinaseCarbonOxaloacetic AcidsPhosphoenolpyruvate CarboxylaseMESH: Succinic Acid[INFO.INFO-BT] Computer Science [cs]/BiotechnologychemistryModels ChemicalSuccinic acidMESH : Lactic AcidMESH : Oxaloacetic AcidsFermentationbiology.proteinFermentationMESH: Lactic AcidMESH : ElectronsMESH : PhosphoenolpyruvateMESH: Acetyl Coenzyme A
researchProduct

Virulent synergistic effect between Enterococcus faecalis and Escherichia coli assayed by using the Caenorhabditis elegans model.

2008

5 pages; International audience; BACKGROUND: The role of enterococci in the pathogenesis of polymicrobial infections is still debated. The purpose of this study was to evaluate the effect of virulent enterococci in the presence or absence of Escherichia coli strains in the in vivo Caenorhabditis elegans model. PRINCIPAL FINDINGS: This study demonstrated that there was a synergistic effect on virulence when an association of enterococci and E. coli (LT50 = 1.6 days+/-0.1 according to the tested strains and death of nematodes in 4 days+/-0.5) was tested in comparison with enterococci alone (LT50 = 4.6 days+/-0.1 and death in 10.4 days+/-0.6) or E. coli alone (LT50 = 2.1+/-0.9 and deaths 6.6+/…

MESH : Virulence FactorsInfectious Diseases/Gastrointestinal InfectionsMESH : Escherichia colilcsh:MedicineMESH : Genotypemedicine.disease_causeMESH: Regression AnalysisPathogenesisMESH: GenotypeInfectious Diseases/Bacterial InfectionsMESH : Regression AnalysisGenotype[ SDV.EE.IEO ] Life Sciences [q-bio]/Ecology environment/SymbiosisEnterococcus faecalis[ SDV.IMM ] Life Sciences [q-bio]/ImmunologyMESH: AnimalsMESH : Anti-Bacterial AgentsMESH : Enterococcus faecalislcsh:ScienceCaenorhabditis elegans0303 health sciencesMultidisciplinarybiologyMESH: Escherichia coliBacterial Infections3. Good healthAnti-Bacterial AgentsMicrobiology/Immunity to InfectionsMESH : Bacterial InfectionsGastroenterology and Hepatology/Gastrointestinal Infections[SDV.IMM]Life Sciences [q-bio]/ImmunologyRegression AnalysisMicrobiology/Cellular Microbiology and PathogenesisResearch ArticleMESH: Enterococcus faecalis[SDV.IMM] Life Sciences [q-bio]/ImmunologyGenotypeMESH: Bacterial InfectionsVirulence FactorsVirulenceEnterococcus faecalisMicrobiologyMESH : Caenorhabditis elegans03 medical and health sciencesIn vivoMESH: Anti-Bacterial AgentsMESH: Caenorhabditis elegansmedicineEscherichia coliAnimalsCaenorhabditis elegansEscherichia coli030304 developmental biologyMESH: Virulence Factors030306 microbiologylcsh:RMicrobiology/Medical Microbiology[SDV.EE.IEO] Life Sciences [q-bio]/Ecology environment/Symbiosisbiology.organism_classificationMESH : Disease Models AnimalDisease Models AnimalEnterococcuslcsh:QMESH : AnimalsMESH: Disease Models Animal[SDV.EE.IEO]Life Sciences [q-bio]/Ecology environment/SymbiosisPloS one
researchProduct

Combined action of redox potential and pH on heat resistance and growth recovery of sublethally heat-damaged Escherichia coli

2000

International audience; The combined effect of redox potential (RP) (from -200 to 500 mV) and pH (from 5.0 to 7.0) on the heat resistance and growth recovery after heat treatment of Escherichia coli was tested. The effect of RP on heat resistance was very different depending on the pH. At pH 6.0, there was no significant difference, whereas at pH 5.0 and 7.0 maximum resistance was found in oxidizing conditions while it fell in reducing ones. In sub-lethally heat-damaged cells, low reducing and acid conditions allowed growth ability to be rapidly regained, but a decrease in the redox potential and pH brought about a longer lag phase and a slower exponential growth rate, and even led to growt…

MESH: Oxidation-ReductionMESH : Escherichia coliMESH: Hydrogen-Ion ConcentrationHot TemperatureThermal resistanceMESH: Hot Temperaturemedicine.disease_causeApplied Microbiology and BiotechnologyRedox03 medical and health sciencesExponential growthMESH : Hydrogen-Ion Concentration[ SDV.MP ] Life Sciences [q-bio]/Microbiology and ParasitologyOxidizing agentEscherichia colimedicineGrowth rate[INFO.INFO-BT]Computer Science [cs]/Biotechnology[SDV.MP] Life Sciences [q-bio]/Microbiology and ParasitologyEscherichia coliComputingMilieux_MISCELLANEOUS030304 developmental biologyMESH : Oxidation-Reduction0303 health sciencesbiologyMESH: Escherichia coli030306 microbiologyChemistryGeneral MedicineHydrogen-Ion Concentrationbiology.organism_classificationEnterobacteriaceaeCulture Media[INFO.INFO-BT] Computer Science [cs]/Biotechnology[SDV.MP]Life Sciences [q-bio]/Microbiology and ParasitologyBiochemistryMESH: Culture MediaBiophysicsMESH : Culture MediaMESH : Hot TemperatureOxidation-Reduction[ INFO.INFO-BT ] Computer Science [cs]/BiotechnologyBacteriaBiotechnologyApplied Microbiology and Biotechnology
researchProduct

Changes in the proton-motive force in Escherichia coli in response to external oxidoreduction potential.

1999

International audience; The pH homeostasis and proton-motive force (Deltap) of Escherichia coli are dependent on the surrounding oxidoreduction potential (ORP). Only the internal pH value and, thus, the membrane pH gradient (DeltapH) component of the Deltap is modified, while the membrane potential (DeltaPsi) does not change in a significant way. Under reducing conditions (Eh < 50 mV at pH 7.0), E. coli decreases its Deltap especially in acidic media (21% decrease at pH 7.0 and 48% at pH 5.0 for a 850-mV ORP decrease). Measurements of ATPase activity and membrane proton conductance (CH+m) depending on ORP and pH have shown that the internal pH decrease is due to an increase in membrane prot…

MESH: Oxidation-ReductionMESH : Escherichia coliMESH: Hydrogen-Ion ConcentrationMembrane permeabilitymedicine.disease_causeBiochemistryMembrane Potentials03 medical and health sciencesMESH : Hydrogen-Ion Concentration[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologymedicineEscherichia coliMESH: Adenosine TriphosphatasesMESH : Membrane PotentialsMESH : ProtonsMESH: Membrane Potentials[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biology[INFO.INFO-BT]Computer Science [cs]/Biotechnology[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular BiologyEscherichia coliComputingMilieux_MISCELLANEOUS030304 developmental biologyMESH : Oxidation-ReductionMembrane potentialchemistry.chemical_classificationAdenosine Triphosphatases0303 health sciencesChromatographyMESH : Adenosine Triphosphatases030306 microbiologyChemiosmosisChemistryMESH: Escherichia coliConductanceHydrogen-Ion Concentration[INFO.INFO-BT] Computer Science [cs]/BiotechnologyMembranePermeability (electromagnetism)BiophysicsThiolMESH: ProtonsProtonsOxidation-Reduction[ INFO.INFO-BT ] Computer Science [cs]/Biotechnology
researchProduct

CTX-M β-Lactamase-Producing Escherichia coli in French Hospitals: Prevalence, Molecular Epidemiology, and Risk Factors▿

2007

ABSTRACT In 2004, 65 CTX-M-producing Escherichia coli isolates were collected from infected patients in four French hospitals. The bla CTX-M-15 genes were predominant. Pulsed-field gel electrophoresis highlighted a clonal propagation of CTX-M-15-producing strains belonging to phylogenetic group B2, notably in the community. The main risk factors for acquiring these isolates were urinary tract infections or the presence of a urinary catheter in diabetic or renal failure patients.

MaleMESH : Escherichia coliMESH : PrevalenceEpidemiologyMESH : AgedMESH: beta-LactamasesMESH: Urinary Tract Infectionsmedicine.disease_causeMESH: Risk Factors[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseasesRisk FactorsGenotypePrevalenceMESH : Urinary Tract InfectionsMESH : FemaleMESH: PhylogenyEscherichia coli InfectionsPhylogenyGel electrophoresisMESH: Aged0303 health sciencesMolecular EpidemiologybiologyMESH: Escherichia coliMESH : beta-LactamasesMESH: HospitalsEnterobacteriaceaeMESH : Risk FactorsHospitals3. Good healthElectrophoresis Gel Pulsed-FieldMESH : Hospitals[ SDV.MHEP.MI ] Life Sciences [q-bio]/Human health and pathology/Infectious diseasesMESH: Electrophoresis Gel Pulsed-FieldMESH : Escherichia coli InfectionsUrinary Tract Infections[SDV.MHEP.MI] Life Sciences [q-bio]/Human health and pathology/Infectious diseasesFemaleFranceMicrobiology (medical)Urinary systemMESH : Malebeta-LactamasesMicrobiologyMESH : Epidemiology Molecular03 medical and health sciencesMESH: Epidemiology MolecularmedicineEscherichia coliHumansRisk factorMESH : FranceEscherichia coliMESH: Prevalence030304 developmental biologyMESH : Electrophoresis Gel Pulsed-FieldMESH: Escherichia coli InfectionsAgedMESH: HumansMolecular epidemiology030306 microbiologyMESH : HumansMESH : Phylogenybiology.organism_classificationMESH: MaleMESH: FranceMESH: FemaleBacteria
researchProduct

Confocal laser endomicroscopy is a new imaging modality for recognition of intramucosal bacteria in inflammatory bowel disease in vivo.

2011

International audience; BACKGROUND AND OBJECTIVES: Interaction of bacteria with the immune system within the intestinal mucosa plays a key role in the pathogenesis of inflammatory bowel disease (IBD). The aim of the current study was to develop a fluorescein-aided confocal laser endomicroscopy (CLE) method to visualise intramucosal enteric bacteria in vivo and to determine the involved mucosal area in the colon and ileum in patients with ulcerative colitis (UC) and Crohn's disease (CD). METHODS: Initially, E coli strains expressing enhanced green fluorescent protein (pEGFP) were endomicroscopically imaged in mice. In addition, ex vivo and in vivo imaging of fluorescent human enteric bacteri…

PathologyMESH : Escherichia colifluoresceinMESH : Retrospective StudiesColorectal cancerMESH : Prospective StudiesGastroenterologyInflammatory bowel disease[ SDV.CAN ] Life Sciences [q-bio]/Cancer0302 clinical medicineIntestinal mucosaMESH: Microscopy ConfocalMESH: AnimalsMESH : Colonoscopy1506MESH: In Situ Hybridization Fluorescenceintramucosal bacteria0303 health sciencesCrohn's diseaseMESH: Escherichia coliGastroenterologyMESH : EnterobacteriaceaeMESH : Colitis UlcerativeUlcerative colitisenteric bacterial microflora3. Good healthMESH : In Situ Hybridization FluorescenceCrohn's diseaseMESH: Colonoscopyconfocal laser endomicroscopyMESH: Intestinal MucosaMESH : Inflammatory Bowel Diseases030211 gastroenterology & hepatologymedicine.medical_specialtyMESH : MaleMESH: Colitis Ulcerative[SDV.CAN]Life Sciences [q-bio]/CancerMESH : Mice Inbred C57BLBiologyMESH : Intestinal MucosaMESH : Crohn Disease03 medical and health sciencesMESH: EnterobacteriaceaeFISHfluorescence endoscopyIn vivoMESH: Mice Inbred C57BLInternal medicineMESH : MicemedicineEndomicroscopyMESH: ColonMESH : Microscopy ConfocalMESH: Miceulcerative colitis030304 developmental biologyMESH : IleumMESH: HumansBacteriaMESH: Crohn Diseaseinfectious colitisMESH : HumansEndoscopyMESH: Retrospective Studiesmedicine.diseaseMESH: Inflammatory Bowel DiseasesMESH : ColonMESH: MaleMESH: Prospective StudiesMESH: IleumMESH : AnimalsEx vivo
researchProduct